A geographically distributed bio-hybrid neural network with memristive plasticity
نویسندگان
چکیده
Throughout evolution the brain has mastered the art of processing real-world inputs through networks of interlinked spiking neurons. Synapses have emerged as key elements that, owing to their plasticity, are merging neuron-to-neuron signalling with memory storage and computation. Electronics has made important steps in emulating neurons through neuromorphic circuits and synapses with nanoscale memristors, yet novel applications that interlink them in heterogeneous bio-inspired and bio-hybrid architectures are just beginning to materialise. The use of memristive technologies in brain-inspired architectures for computing or for sensing spiking activity of biological neurons are only recent examples, however interlinking brain and electronic neurons through plasticity-driven synaptic elements has remained so far in the realm of the imagination. Here, we demonstrate a bio-hybrid neural network (bNN) where memristors work as ‘synaptors’ between rat neural circuits and VLSI neurons. The two fundamental synaptors, from artificial-to-biological (ABsyn) and from biological-toartificial (BAsyn), are interconnected over the Internet. The bNN extends across Europe, collapsing spatial boundaries existing in natural brain networks and laying the foundations of a new geographically distributed and evolving architecture: the Internet of Neuro-electronics (IoN).
منابع مشابه
Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملImplementation of a spike-based perceptron learning rule using TiO2−x memristors
Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid ...
متن کاملSynaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfOx/ZnOx/TiN Memristive System
In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amp...
متن کاملA compound memristive synapse model for statistical learning through STDP in spiking neural networks
Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compoun...
متن کاملPattern recognition with TiOx-based memristive devices
We report on the development of TiOx-based memristive devices for bio-inspired neuromorphic systems. In particular, capacitor like structures of Al/AlOx/TiOx/Al with, respectively 20 nm and 50 nm thick TiOx-layers were fabricated and analyzed in terms of their use in neural network circuits. Therefore, an equivalent circuit model is presented which mimics the observed device properties on a qua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.04179 شماره
صفحات -
تاریخ انتشار 2017